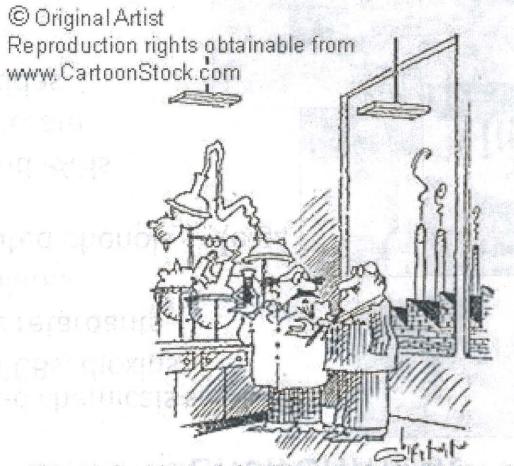


ORY SCHOOL OF PUBLIC HEALTH



Chemicals Are Pervasive in the Environment

- Banned chemicals such as DDT, PCBs, dioxins
- Flame retardants
- Phthalates
- Alkylated phenols BPA)
- ETS and PAHs
- Perchlorate
- Pesticides

Pesticide Toxicity - Lethal by Design

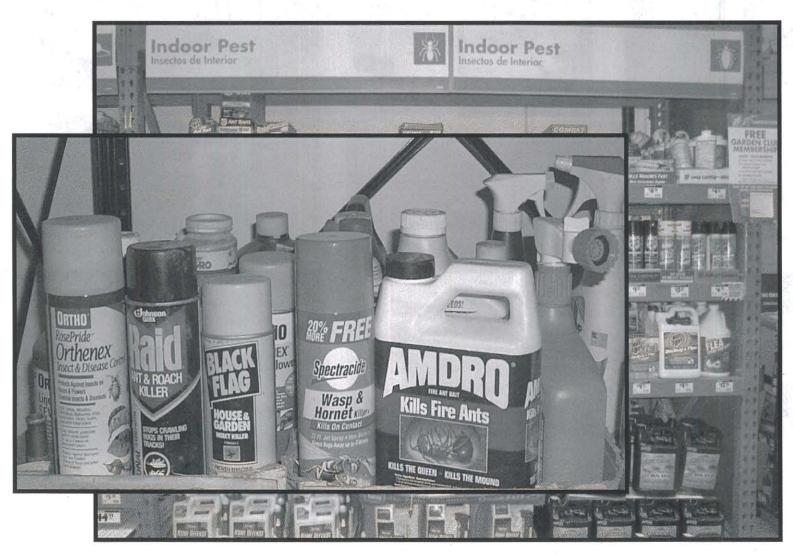
"As we had hoped, it kills weevils instantly. It also kills blue birds, snow geese, ground hogs,manatees, butterflies,swordfish and Alaska king crabs. Will that be a problem?"

Pesticides are Covenient

© Original Artist
Reproduction rights obtainable from
www.CartoonStock.com

"Oh no, Daisy's committing herbicide!"

Pesticides are Critical Public Health Tools



•01/07/2011

OSU Research Day

တီ

Pesticides are Easy to Obtain

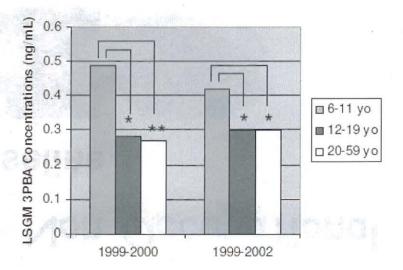
Pesticides Are Everywhere

OSU Research Day

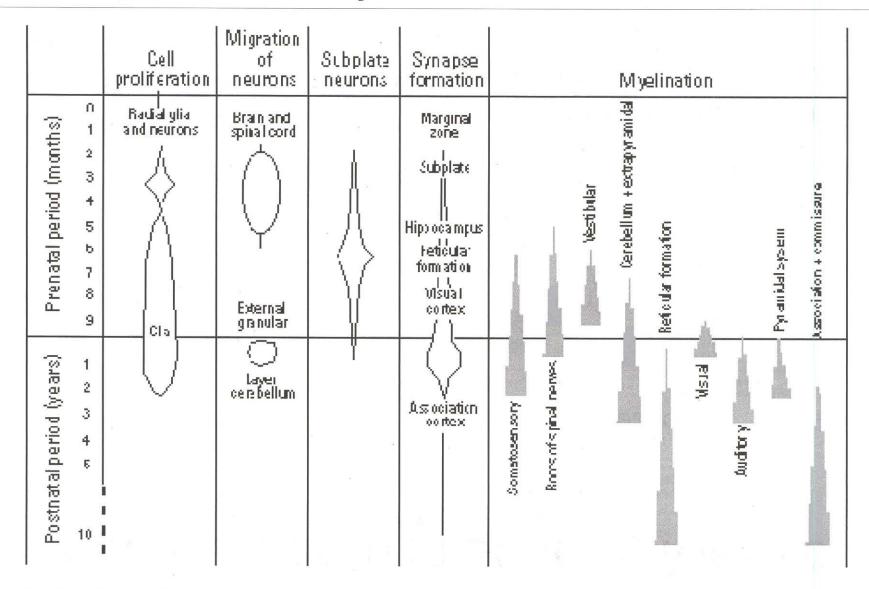
•01/07/2011

Key Exposure Pathways - Non Occupational Diet is the baseline

Followed by sporadic exposures from other/household uses


Pesticides are in (most of) our bodies (esp. children)

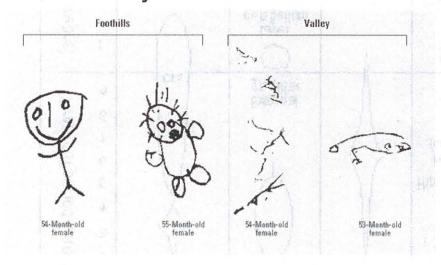
		Geometric		Selected percentile				Weighted
	Survey	mean	(95% confidence interval)				Sample Detection	
	years	(95% confidence limit)	50th	75th	90th	95th	size	Percent
Age group								
6-11 years	99-00	0.417 (0.292-0.595)	0.320 (0.210-0.490)	10.12 (0.700-1.60)	4.18 (2.02-6.54)	8.63 (3.89-71.1)	483	71.9
	01-02	0.325 (0.260-0.406)	0.300 (0.200-0.420)	0.760 (0.570-1.05)	1.81 (1.42-2.78)	3.38 (2.25-4.12)	580	75.2
12-19 years	99-00	0.336 (0.265-0.427)	0.290 (0.200-0.440)	0.870 (0.620-1.04)	1.93 (1.49-2.90)	4,33 (1.83-11.1)	682	73.2
	01-02	0.353 (0.288-0.434)	0.300 (0.250-0.390)	0.800 (0.560-1.13)	1.86 (1.48-2.35)	3.45 (2.14-6.69)	831	79.8
20-59 years	99-00	0.267 (0.227-0.314)	0.230 (0.160-0.300)	0.640 (0.510-0.820)	1.49 (1.25-1.78)	3,21 (2.04-5.41)	833	64.2
8 N	01-02	0.314 (0.271-0.364)	0.270 (0.220-0.340)	0.670 (0.530-0.780)	1.65 (1.27-2.34)	3.25 (2.51-6.16)	1128	75.8
60+ years	01-02	0.303 (0.233-0.394)	0.250 (0.180-0.350)	0.690 (0.490-1.10)	2.03 (1.45-3.68)	5.16 (2.77-6.61)	509	70.3
	01-02	0.372 (0.301-0.462)	0.320 (0.240-0.410)	0.730 (0.540-1.02)	2.16 (1.28-3.50)	4.06 (2.44-6.15)	508	70.3


Urinary concentrations of 3-phenoxybenzoic acid (3PBA) acid (ng/mL) in the general U.S. population, NHANES 1999-2002

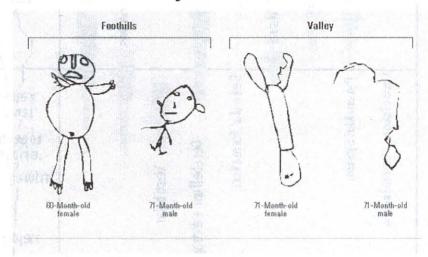
(modified from Table 2, Barr et al. 2010. Environ Health Perspect Epub 3 Feb.

Barr et al. 2010. Fig. 3

Why do we care?



[•]Fig 2 in Critical periods of vulnerability for the developing nervous system


• Environ Health Perspect 108:511-33.

Yaqui Children in Sonora, Mexico

4-year olds

5-year olds

Valley children had decreased stamina, motor skills, and cognitive development

Foothill and valley children differed only in local use of pesticides

Guillette et al., EHP 106(6):347-53 (1998).

Three US Birth Cohorts Investigating Chlorpyrifos Exposure and Health

- Evaluate in utero and early childhood exposures
- Urine and blood samples collected
- Air and/or dust samples collected
- Neurological health endpoints
- Urban and agricultural communities
- Multiple exposure measures

Neurological Delays Found in All Three Studies

Rauh et al. Pediatrics;118(6):e1845-59 (2006).

PEDIATRICS

OFFICIAL LOURWAY OF THE AMERICAN ACABEMY OF PROINTRICS

Impact of Prenatal Chlorpyrifus Exposure on Neurodevelopment in the First 3 Years of Life Among Inner-City Children Vinginia A. Raub, Robin Garfinlad, Frederica P. Perera, Howard F. Androses, Lot

Vingimia A. Rauh, Rohin Gardinkel, Freiherica P. Perera, Howard F. Androses, Led Hospier, Dana R. Barr, Ralish Whitehead, Dellarg, Tang and Rohin W. Weyser. Publisherica 2006;118;e1845-e1889; originally published enline New 20, 2006; DCR: 10.1542/publ.2506 0138

The unline version of this writch, along with updated inferential and services, is located on the World Wide With at hispoleowee portains any epigeborism field 1 \$450-1345

Research | Children's Health

Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children

Brenda Eskenazi, Amy R. Marks, Asa Bradman, Kim Harley, Dana B. Barr, Caroline Johnson, Norma Morga, and Nicholas P. Jewell

¹Center for Children's Environmental Health Research, School of Public Health, University of California, Berkeley, California, USA; ²National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ³Center for the Health Assessment of Mothers and Children of Salinas, Clinica de Salud del Valle de Salinas, Berkeley, California, USA

Research | Children's Health

Neurobehavioral Deficits and Increased Blood Pressure in School-Age Children Prenatally Exposed to Pesticides

Raul Harari, ¹ Jordi Julvez, ² Katsuyuki Murata, ³ Dana Barr, ⁴ David C. Bellinger, ^{2,5} Frodi Debes, ⁶ and Philippe Grandjean ^{2,6}

¹Corporación para el Desarrollo de la Producción y el Medio Ambiente Laboral, Quito, Ecuador; ²Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; ³Division of Environmental Health Sciences, Akita University, Akita, Japan; ⁴National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ⁵Department of Neurology, Children's Hospital, Boston, Massachusetts, USA; ⁶Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark

PEDIATRICS

Research | Children's Health

Organophosphate Pesticide Exposure and Attention in Young Mexican-American Children: The CHAMACOS Study

Anny R. Marine. ¹ Kirn Haring. ² Ann Bradenan, ¹ Katherine Kogut, ¹ Clans Boyd Bact, ² Caroline Johnson, ³ Nortes Calderon, ³ and Brends Eskenari¹

"Contagritor Chaldron's Lowersensetal Health Research, School of Public Health, Upwersety of California, Bertoley, Bertoley, California, USA, "Emory University, Rollins School of Public Health, Attanta, Georgia, USA, "Conser for the Health Assessment of Mothers and Children of Saltron, Chesca de Saltron, California, USA."

Pesticide Exposure and Shorting as Independent Predictors of Neurobehavioral Deficits in Ecuadorida School Children

Pfelippe Grandjean, Raul Harart, Dana H. Harr and Freck Deben Pochartics 2006;117;c546-e556 DDR: 10.1542/peda.2005-1781

The uniting version of this article, along with updated information and services, is located on the World Wisle Web at: http://www.podiatrics.org/cgi/content/full/117/3/s546

Outcome	Finding	Exposure Metric	Cohort
Birth Outcome • Length	Decrease	Maternal Blood CPF	NCY1
Weight	Decrease	Maternal DAP/PON Maternal Blood CPF	CHAMACOS NCY1
Head Circumference	Decrease	Maternal DAPs/PON Maternal TCPY/PON	CHAMACOS NCY2
Gestational Age	Decrease	Maternal DAPs/AChE	CHAMACOS
Neonatal Reflex	Abnormal	Maternal DAPs Maternal DAPs/PON	CHAMACOS
Cognitive Development @ 24 mo	Decreased	Maternal DAPs	CHAMACOS
Pervasive Development Disorder @ 3yrs	Increased	Maternal Blood CPF Maternal and Child DAPs	NCY1 CHAMACOS
Age at onset of ADHD	Decreased	Maternal Blood CPF	NY1
ADHD by age 5	Increased	Maternal DAPs	CHAMACOS
Cognitive development until aged 7 years	Decreased	Maternal Blood CPF Maternal Blood CPF Maternal DAPs/PON	CHAMACOS NYC2 NYC2
IQ IBIC	Decreased	Maternal Blood CPF Maternal Blood CPF Maternal DAPs/PON	CHAMACOS NCY1 NYC2

CDC's Fourth National Report on Human Exposure to Environmental Chemicals (1999-2004)

Urine

Metals

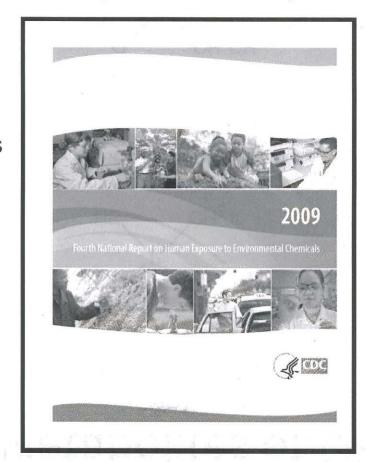
PAH metabolites

Phthalate metabolites

Pesticide metabolites

Phytoestrogens

Phenols


Perchlorate

Blood

Lead

Cadmium

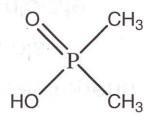
Mercury

Released: December 2009 www.cdc.gov/exposurereport

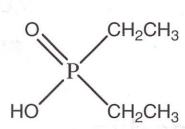
Serum

Dioxins

Furans


PCBs

Organochlorine pesticides


Cotinine

PFCs

Common Metabolites of OP Pesticides

Dimethylphosphate

Diethylphosphate

Dimethylthiophosphate

Diethylthiophosphate

$$\begin{array}{c|c} S & CH_3 \\ \hline \\ HS & CH_3 \end{array}$$

Dimethyldithiophosphate

Diethyldithiophosphate

PEDIATRICS

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)

Attention-Deficit/Flyperactivity Disorder and Urinary Metabolites of Organophisphate Pesticides

Maryne F. Houchard, David C. Hefinger, Robert C. Weight and Marc C. Weitskepf Postentes 2010;125:e1270-e1277; originally published online May 17, 2010; DOI: 10.1542/peds.2009-3058

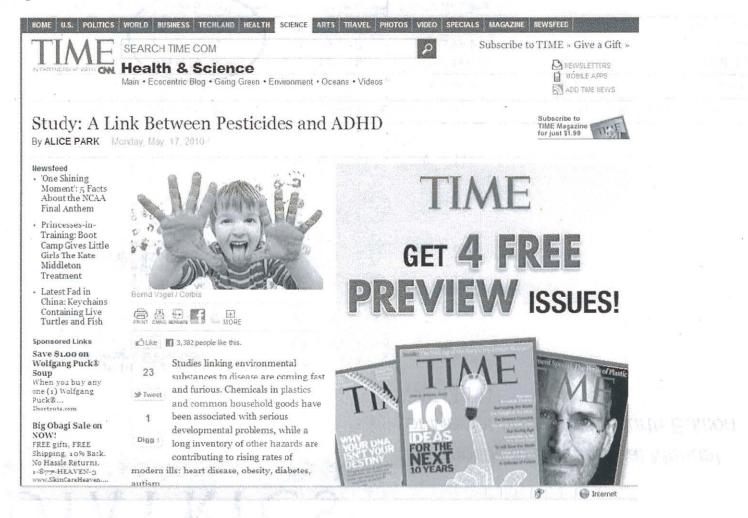
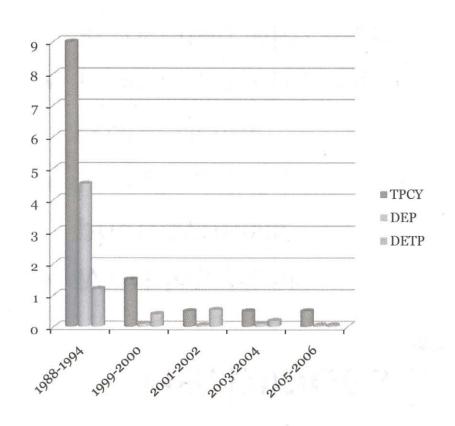
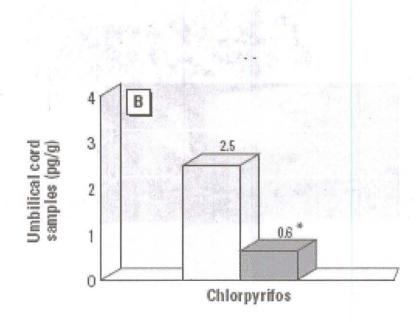

The ordine vendon of this acticle, along with updated information and services, is located on the World Wide Web at: http://www.pediatrics.org/cgt/content/full/125/6/e1270

TABLE 5 ORs for Subtypes of ADHD for 10-Fold increases in Uninery DAP Metabolite Levels (W - 1139)

	OR 95% CII .							
	Hyperactive/Impulsive Subtype (n = 21)		Inattentive Subtype (n = ĐĐ)		Combined Subtype (n = 29)			
	Unadjusted	Admetada	linadjusted	Adjusted	Unadjusted	Ad usted*		
DEAPs	2.29 (1.25-4.21)	2 15 (1.09-4.40)	0.7740.52-1.141	0.70 (0.49-1.01)	1 29 (0 69-2 43)	1.22 (0.59-2.50)		
DMAFs	2.26 (1.33-3.96)	2 13 (1.08-420)	16141.10-2.371	147 (0.99-2 (9)	1.30 (0.56-2.99)	1.30 to 49-3 48		
Total DAPs	1.95 (1.18-3.22)	1.05 (1:04-3.27)	1 26 (0.91-1.75)	1.14 (0.21-1.61)	1.09 (0.59-2.01)	1.05 (0.5) - 2.15		

^{*} Adjusted for garder, age, riscalethnicity, P.H. tasked duration, and logs immically transformed urinary creatinine concentration.


Even early childhood exposures to pesticides are linked to ADHD


Bouchard et al.; Pediatrics;125(6):e1270-7 (2010).

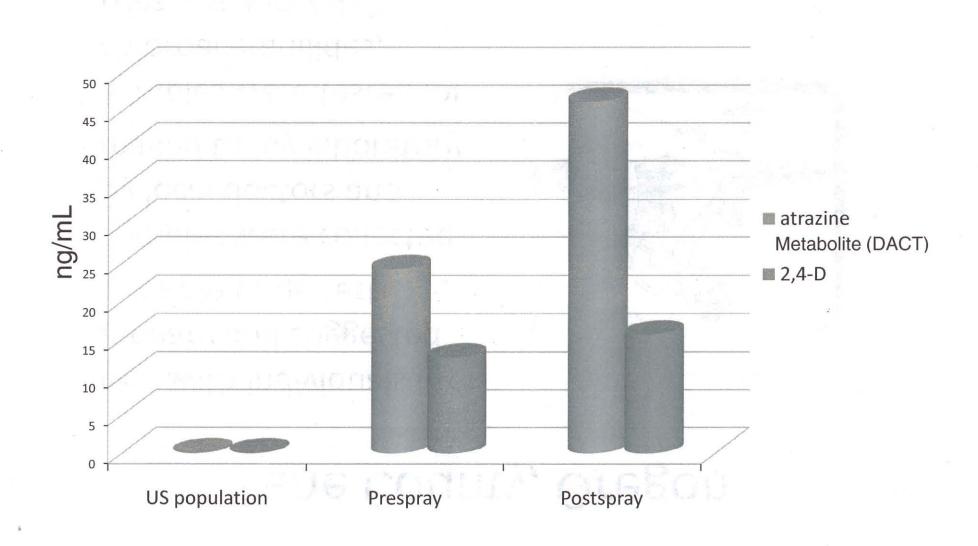
Have US Regulatory Efforts Reduced OP Insecticide Exposure?

Absolutely

But Probably Not Enough

Herbicides ... Another story

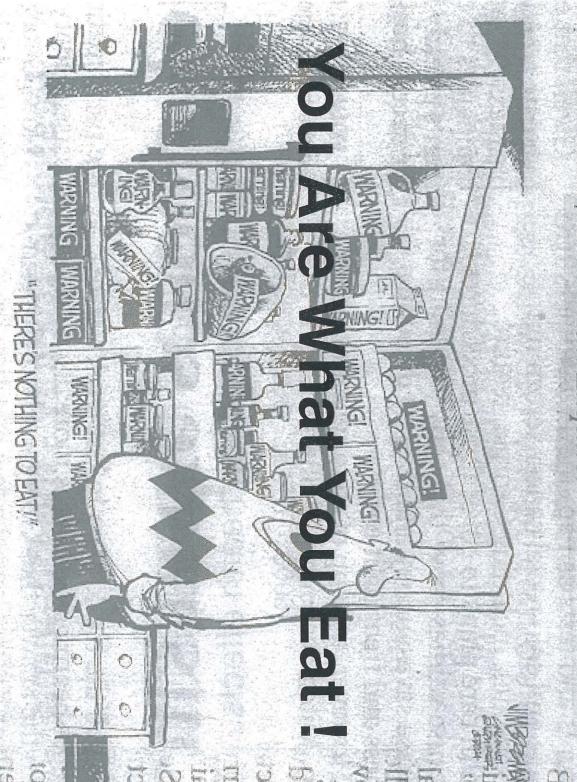
- Most interrupt photosythesis
- Largely used cosmetically
- Health outcome most associated with them are endocrine modulating effects



Lane County, Oregon

- Met with individuals in January and suggested a simple urine test
- Samples were collected by local doctors and mailed to my laboratory
- Samples were tested for chloroacetanilides, triazines and 2,4-D

Data suggest herbicide exposures



Pesticide Toxicity - the Dilemma

We are being used as the experimental rats for studying the long-term health effects of pesticide use. (Alex Lu, 2009)

Since we are all unique in our coexposures, comorbidities, lifestyle factors, and genetics, our experiment has an N of 1 with no controls and no possibility of replication.

JIM BORGMAN / Cincinnati Enquirer

